Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
2.
J Virol Methods ; 317: 114732, 2023 07.
Article in English | MEDLINE | ID: covidwho-2290746

ABSTRACT

The ongoing COVID-19 pandemic has emphasized the significance of wastewater surveillance in monitoring and tracking the spread of infectious diseases, including SARS-CoV-2. The wastewater surveillance approach detects genetic fragments from viruses in wastewater, which could provide an early warning of outbreaks in communities. In this study, we determined the concentrations of four types of endogenous viruses, including non-enveloped DNA (crAssphage and human adenovirus 40/41), non-enveloped RNA (enterovirus), and enveloped RNA (SARS-CoV-2) viruses, from wastewater samples using the adsorption-extraction (AE) method with electronegative HA membranes of different pore sizes (0.22, 0.45, and 0.80 µm). Our findings showed that the membrane with a pore size of 0.80 µm performed comparably to the membrane with a pore size of 0.45 µm for virus detection/quantitation (repeated measurement one-way ANOVA; p > 0.05). We also determined the recovery efficiencies of indigenous crAssphage and pepper mild mottle virus, which showed recovery efficiencies ranging from 50% to 94% and from 20% to 62%, respectively. Our results suggest that the use of larger pore size membranes may be beneficial for processing larger sample volumes, particularly for environmental waters containing low concentrations of viruses. This study offers valuable insights into the application of the AE method for virus recovery from wastewater, which is essential for monitoring and tracking infectious diseases in communities.


Subject(s)
COVID-19 , Viruses , Humans , Wastewater , SARS-CoV-2/genetics , Pandemics , Adsorption , Wastewater-Based Epidemiological Monitoring , RNA , RNA, Viral
3.
Trop Med Infect Dis ; 8(4)2023 Mar 31.
Article in English | MEDLINE | ID: covidwho-2291584

ABSTRACT

INTRODUCTION: During the first two years of the COVID-19 pandemic, Australia implemented a series of international and interstate border restrictions. The state of Queensland experienced limited COVID-19 transmission and relied on lockdowns to stem any emerging COVID-19 outbreaks. However, early detection of new outbreaks was difficult. In this paper, we describe the wastewater surveillance program for SARS-CoV-2 in Queensland, Australia, and report two case studies in which we aimed to assess the potential for this program to provide early warning of new community transmission of COVID-19. Both case studies involved clusters of localised transmission, one originating in a Brisbane suburb (Brisbane Inner West) in July-August 2021, and the other originating in Cairns, North Queensland in February-March 2021. MATERIALS AND METHODS: Publicly available COVID-19 case data derived from the notifiable conditions (NoCs) registry from the Queensland Health data portal were cleaned and merged spatially with the wastewater surveillance data using statistical area 2 (SA2) codes. The positive predictive value and negative predictive value of wastewater detection for predicting the presence of COVID-19 reported cases were calculated for the two case study sites. RESULTS: Early warnings for local transmission of SARS-CoV-2 through wastewater surveillance were noted in both the Brisbane Inner West cluster and the Cairns cluster. The positive predictive value of wastewater detection for the presence of notified cases of COVID-19 in Brisbane Inner West and Cairns were 71.4% and 50%, respectively. The negative predictive value for Brisbane Inner West and Cairns were 94.7% and 100%, respectively. CONCLUSIONS: Our findings highlight the utility of wastewater surveillance as an early warning tool in low COVID-19 transmission settings.

4.
Environ Int ; 173: 107743, 2023 03.
Article in English | MEDLINE | ID: covidwho-2249571

ABSTRACT

Wastewater-based epidemiology (WBE) has the potential to predict COVID-19 cases; however, reliable methods for tracking SARS-CoV-2 RNA concentrations (CRNA) in wastewater are lacking. In the present study, we developed a highly sensitive method (EPISENS-M) employing adsorption-extraction, followed by one-step RT-Preamp and qPCR. The EPISENS-M allowed SARS-CoV-2 RNA detection from wastewater at 50 % detection rate when newly reported COVID-19 cases exceed 0.69/100,000 inhabitants in a sewer catchment. Using the EPISENS-M, a longitudinal WBE study was conducted between 28 May 2020 and 16 June 2022 in Sapporo City, Japan, revealing a strong correlation (Pearson's r = 0.94) between CRNA and the newly COVID-19 cases reported by intensive clinical surveillance. Based on this dataset, a mathematical model was developed based on viral shedding dynamics to estimate the newly reported cases using CRNA data and recent clinical data prior to sampling day. This developed model succeeded in predicting the cumulative number of newly reported cases after 5 days of sampling day within a factor of √2 and 2 with a precision of 36 % (16/44) and 64 % (28/44), respectively. By applying this model framework, another estimation mode was developed without the recent clinical data, which successfully predicted the number of COVID-19 cases for the succeeding 5 days within a factor of √2 and 2 with a precision of 39 % (17/44) and 66 % (29/44), respectively. These results demonstrated that the EPISENS-M method combined with the mathematical model can be a powerful tool for predicting COVID-19 cases, especially in the absence of intensive clinical surveillance.


Subject(s)
COVID-19 , RNA, Viral , Humans , SARS-CoV-2/genetics , Wastewater , COVID-19/diagnosis , Models, Theoretical
5.
Sci Total Environ ; 880: 162694, 2023 Jul 01.
Article in English | MEDLINE | ID: covidwho-2249570

ABSTRACT

Since the COVID-19 pandemic, a decrease in the prevalence of Influenza A virus (IAV) and respiratory syncytial virus (RSV) has been suggested by clinical surveillance. However, there may be potential biases in obtaining an accurate overview of infectious diseases in a community. To elucidate the impact of the COVID-19 on the prevalence of IAV and RSV, we quantified IAV and RSV RNA in wastewater collected from three wastewater treatment plants (WWTPs) in Sapporo, Japan, between October 2018 and January 2023, using highly sensitive EPISENS™ method. From October 2018 to April 2020, the IAV M gene concentrations were positively correlated with the confirmed cases in the corresponding area (Spearman's r = 0.61). Subtype-specific HA genes of IAV were also detected, and their concentrations showed trends that were consistent with clinically reported cases. RSV A and B serotypes were also detected in wastewater, and their concentrations were positively correlated with the confirmed clinical cases (Spearman's r = 0.36-0.52). The detection ratios of IAV and RSV in wastewater decreased from 66.7 % (22/33) and 42.4 % (14/33) to 4.56 % (12/263) and 32.7 % (86/263), respectively in the city after the COVID-19 prevalence. The present study demonstrates the potential usefulness of wastewater-based epidemiology combined with the preservation of wastewater (wastewater banking) as a tool for better management of respiratory viral diseases.


Subject(s)
COVID-19 , Influenza A virus , Influenza, Human , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Humans , Influenza, Human/epidemiology , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/genetics , Wastewater-Based Epidemiological Monitoring , Pandemics , Prevalence , Wastewater , COVID-19/epidemiology , Respiratory Syncytial Virus, Human/genetics
6.
Curr Opin Environ Sci Health ; 33: 100458, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2264702

ABSTRACT

Wastewater-based epidemiology (WBE) has been demonstrated for its great potential in tracking of coronavirus disease 2019 (COVID-19) transmission among populations despite some inherent methodological limitations. These include non-optimized sampling approaches and analytical methods; stability of viruses in sewer systems; partitioning/retention in biofilms; and the singular and inaccurate back-calculation step to predict the number of infected individuals in the community. Future research is expected to (1) standardize best practices in wastewater sampling, analysis and data reporting protocols for the sensitive and reproducible detection of viruses in wastewater; (2) understand the in-sewer viral stability and partitioning under the impacts of dynamic wastewater flow, properties, chemicals, biofilms and sediments; and (3) achieve smart wastewater surveillance with artificial intelligence and big data models. Further specific research is essential in the monitoring of other viral pathogens with pandemic potential and subcatchment applications to maximize the benefits of WBE beyond COVID-19.

7.
Environ Res ; 216(Pt 2): 114631, 2023 01 01.
Article in English | MEDLINE | ID: covidwho-2243830

ABSTRACT

Even reaching the end of the year 2022, there is still a controversy on the origin of the SARS-CoV-2 virus. This Virtual Special Issue (VSI), focused on the "Scientific evidence on the origin of SARS-CoV-2", was launched some months ago with the aim of stimulating the submission of new high quality scientific research papers on the matter, to shed light on it. As indicated in the call for papers, the Editors involved in the VSI were aware of the difficulties of presenting concluding facts on that issue, however, bearing in mind that some teams of researchers had started investigations regarding this subject, a VSI like this (searching for stimulating the scientific controversy while requiring scientific evidence), could help to elucidate complicated aspects, going a step ahead in this way. The Editors made a call encouraging interested teams of researchers having solid results to submit high quality manuscripts dealing with this crucial theme. We thought -and we still think-that it is of maximum interest for the scientific community, as well as for the whole society, now and probably for the future. The VSI have received 50 submissions, which could be considered a limited number highlighting the difficulties of elaborating new high-quality manuscripts providing solid evidence on the matter. After a careful peer-review, those manuscripts considered to reach the highest scientific value were accepted for publication. The Editors think that the set of papers included in this VSI constitute interesting and high-quality contributions, providing further scientific knowledge on this issue. In this editorial piece, the Editors make some comments on the papers published, including some additional reflections.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans
8.
Sci Total Environ ; : 160072, 2022 Nov 07.
Article in English | MEDLINE | ID: covidwho-2238404

ABSTRACT

In this study, two virus concentration methods, namely Adsorption-extraction (AE) and Nanotrap® Magnetic Virus Particles (NMVP) along with commercially available extraction kits were used quantify endogenous pepper mild mottle virus (PMMoV) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in nucleic acid extracted from 48 wastewater samples collected over six events from eight wastewater treatment plants (WWTPs). The main aim was to determine which workflow (i.e., concentration and extraction methods) produces greater concentrations of PMMoV and SARS-CoV-2 gene copies (GC) in comparison with each other. Turbidity and total suspended solids (TSS) of wastewater samples within and among the eight WWTPs were highly variable (41-385 NTU and 77-668 mg/L TSS). In 58 % of individual wastewater samples the log10 GC concentrations of PMMoV were greater by NMVP workflow compared to AE workflow. Paired measurements of PMMoV GC/10 mL from AE and NMVP across all 48 wastewater samples were weakly correlated (r = 0.455, p = 0.001) and demonstrated a poor linear relationship (r2 = 0.207). The log10 GC concentrations of SARS-CoV-2 in 69 % of individual samples were greater by AE workflow compared to NMVP workflow. In contrast to PMMoV, the AE and NMVP derived SARS-CoV-2 GC counts were strongly correlated (r = 0.859, p < 0.001) and demonstrated a strong linear relationship (r2 = 0.738). In general, the PMMoV GC achieved by the NMVP workflow decreased with increasing turbidity, but the PMMoV GC by the AE workflow did not appear to be sensitive to either turbidity or TSS levels. These findings suggest that suspended solids concentration, and the intended target for analysis should be considered when validating an optimal workflow for wastewater surveillance.

9.
Sci Total Environ ; 864: 161023, 2023 Mar 15.
Article in English | MEDLINE | ID: covidwho-2159794

ABSTRACT

The early warning and tracking of COVID-19 prevalence in the community provided by wastewater surveillance has highlighted its potential for much broader viral disease surveillance. In this proof-of-concept study, 46 wastewater samples from four wastewater treatment plants (WWTPs) in Queensland, Australia, were analyzed for the presence and abundance of 13 respiratory viruses, and the results were compared with reported clinical cases. The viruses were concentrated using the adsorption-extraction (AE) method, and extracted nucleic acids were analyzed using qPCR and RT-qPCR. Among the viruses tested, bocavirus (BoV), parechovirus (PeV), rhinovirus A (RhV A) and rhinovirus B (RhV B) were detected in all wastewater samples. All the tested viruses except influenza B virus (IBV) were detected in wastewater sample from at least one WWTP. BoV was detected with the greatest concentration (4.96-7.22 log10 GC/L), followed by Epstein-Barr virus (EBV) (4.08-6.46 log10 GC/L), RhV A (3.95-5.63 log10 GC/L), RhV B (3.74-5.61 log10 GC/L), and PeV (3.17-5.32 log10 GC/L). Influenza viruses and respiratory syncytial virus (RSV) are notifiable conditions in Queensland, allowing the gene copy (GC) concentrations to be compared with reported clinical cases. Significant correlations (ρ = 0.60, p < 0.01 for IAV and ρ = 0.53, p < 0.01 for RSV) were observed when pooled wastewater influenza A virus (IAV) and RSV log10 GC/L concentrations were compared to log10 clinical cases among the four WWTP catchments. The positive predictive value for the presence of IAV and RSV in wastewater was 97 % for both IAV and RSV clinical cases within the four WWTP catchments. The overall accuracy of wastewater analysis for predicting clinical cases of IAV and RSV was 97 and 90 %, respectively. This paper lends credibility to the application of wastewater surveillance to monitor respiratory viruses of various genomic characteristics, with potential uses for increased surveillance capabilities and as a tool in understanding the dynamics of disease circulation in the communities.


Subject(s)
COVID-19 , Epstein-Barr Virus Infections , Influenza, Human , Humans , Wastewater , Queensland/epidemiology , Herpesvirus 4, Human , Wastewater-Based Epidemiological Monitoring , Respiratory Syncytial Viruses/genetics , Influenza B virus/genetics , Australia , Influenza, Human/epidemiology
10.
J Virol Methods ; 311: 114645, 2023 01.
Article in English | MEDLINE | ID: covidwho-2095723

ABSTRACT

Wastewater monitoring for severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), the virus responsible for the global coronavirus disease 2019 (COVID-19) pandemic, has highlighted the need for methodologies capable of assessing viral prevalence during periods of low population infection. To address this need, two volumetrically different, methodologically similar concentration approaches were compared for their abilities to detect viral nucleic acid and infectious SARS-CoV-2 signal from primary influent samples. For Method 1, 2 L of SARS-CoV-2 seeded wastewater was evaluated using a dead-end hollow fiber ultrafilter (D-HFUF) for primary concentration, followed by the CP Select™ for secondary concentration. For Method 2, 100 mL of SARS-CoV-2 seeded wastewater was evaluated using the CP Select™ procedure. Following D-HFUF concentration (Method 1), significantly lower levels of infectious SARS-CoV-2 were lost (P value range: 0.0398-0.0027) compared to viral gene copy (GC) levels detected by the US Centers for Disease Control (CDC) N1 and N2 reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) assays. Subsamples at different steps in the concentration process were also taken to better characterize the losses of SARS-CoV-2 during the concentration process. During the centrifugation step (prior to CP Select™ concentration), significantly higher losses (P value range: 0.0003 to <0.0001) occurred for SARS-CoV-2 GC levels compared to infectious virus for Method 1, while between the methods, significantly higher infectious viral losses were observed for Method 2 (P = 0.0002). When analyzing overall recovery of endogenous SARS-CoV-2 in wastewater samples, application of Method 1 improved assay sensitivities (P = <0.0001) compared with Method 2; this was especially evident during periods of lower COVID-19 case rates within the sewershed. This study describes a method which can successfully concentrate infectious SARS-CoV-2 and viral RNA from wastewater. Moreover, we demonstrated that large volume wastewater concentration provides additional sensitivity needed to improve SARS-CoV-2 detection, especially during low levels of community disease prevalence.


Subject(s)
COVID-19 , Viruses , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Wastewater , Pandemics , RNA, Viral/genetics
11.
Environmental research ; 2022.
Article in English | EuropePMC | ID: covidwho-2073535

ABSTRACT

Even reaching the end of the year 2022, there is still a controversy on the origin of the SARS-CoV-2 virus. This Virtual Special Issue (VSI), focused on the “Scientific evidence on the origin of SARS-CoV-2”, was launched some months ago with the aim of stimulating the submission of new high quality scientific research papers on the matter, to shed light on it. As indicated in the call for papers, the Editors involved in the VSI were aware of the difficulties of presenting concluding facts on that issue, However, bearing in mind that some teams of researchers had started investigations regarding this subject, a VSI like this (searching for stimulating the scientific controversy while requiring scientific evidence), could help to elucidate complicated aspects, going a step ahead in this way. The Editors made a call encouraging interested teams of researchers having solid results to submit high quality manuscripts dealing with this crucial theme. We thought -and we still think-that it is of maximum interest for the scientific community, as well as for the whole society, now and probably for the future. The VSI have received 50 submissions, which could be considered a limited number highlighting the difficulties of elaborating new high-quality manuscripts providing solid evidence on the matter. After a careful peer-review, those manuscripts considered to reach the highest scientific value were accepted for publication. The Editors think that the set of papers included in this VSI constitute interesting and high-quality contributions, providing further scientific knowledge on this issue. In this editorial piece, the Editors make some comments on the papers published, including some additional reflections.

12.
Environ Res ; 214(Pt 2): 113931, 2022 11.
Article in English | MEDLINE | ID: covidwho-1965612

ABSTRACT

In this editorial piece, the Editors of the Virtual Special Issue (VSI) "The environment, epidemics, and human health" comment on the papers accepted for publication, which were selected after peer-reviewing among all those manuscripts submitted to the Special Issue. In view of the title of the VSI, it is clear that its aim goes beyond the COVID-19 pandemic, trying to explore relations among environmental aspects, any kind of epidemics, and human health. However, COVID-19 is still hitting as a global and current main issue, causing that manuscripts dealing with this disease and the SARS-CoV-2 virus are of high relevance in the whole set of research papers published.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Pandemics
13.
ACS ES T Water ; 2(11): 1871-1880, 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-1927040

ABSTRACT

We compared reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and RT digital PCR (RT-dPCR) platforms for the trace detection of SARS-CoV-2 RNA in low-prevalence COVID-19 locations in Queensland, Australia, using CDC N1 and CDC N2 assays. The assay limit of detection (ALOD), PCR inhibition rates, and performance characteristics of each assay, along with the positivity rates with the RT-qPCR and RT-dPCR platforms, were evaluated by seeding known concentrations of exogenous SARS-CoV-2 in wastewater. The ALODs using RT-dPCR were approximately 2-5 times lower than those using RT-qPCR. During sample processing, the endogenous (n = 96) and exogenous (n = 24) SARS-CoV-2 wastewater samples were separated, and RNA was extracted from both wastewater eluates and pellets (solids). The RT-dPCR platform demonstrated a detection rate significantly greater than that of RT-qPCR for the CDC N1 and CDC N2 assays in the eluate (N1, p = 0.0029; N2, p = 0.0003) and pellet (N1, p = 0.0015; N2, p = 0.0067) samples. The positivity results also indicated that for the analysis of SARS-CoV-2 RNA in wastewater, including the eluate and pellet samples may further increase the detection sensitivity using RT-dPCR.

14.
Water Res ; 220: 118621, 2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1852231

ABSTRACT

During the coronavirus disease 2019 (COVID-19) pandemic, wastewater surveillance has become an important tool for monitoring the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within communities. In particular, reverse transcription-quantitative PCR (RT-qPCR) has been used to detect and quantify SARS-CoV-2 RNA in wastewater, while monitoring viral genome mutations requires separate approaches such as deep sequencing. A high throughput sequencing platform (ATOPlex) that uses a multiplex tiled PCR-based enrichment technique has shown promise in detecting variants of concern (VOC) while also providing virus quantitation data. However, detection sensitivities of both RT-qPCR and sequencing can be impacted through losses occurring during sample handling, virus concentration, nucleic acid extraction, and RT-qPCR. Therefore, process limit of detection (PLOD) assessments are required to estimate the gene copies of target molecule to attain specific probability of detection. In this study, we compare the PLOD of four RT-qPCR assays (US CDC N1 and N2, China CDC N and ORF1ab) for detection of SARS-CoV-2 to that of ATOPlex sequencing by seeding known concentrations of gamma-irradiated SARS-CoV-2 into wastewater. Results suggest that among the RT-qPCR assays, US CDC N1 was the most sensitive, especially at lower SARS-CoV-2 seed levels. However, when results from all RT-qPCR assays were combined, it resulted in greater detection rates than individual assays, suggesting that application of multiple assays is better suited for the trace detection of SARS-CoV-2 from wastewater samples. Furthermore, while ATOPlex offers a promising approach to SARS-CoV-2 wastewater surveillance, this approach appears to be less sensitive compared to RT-qPCR under the experimental conditions of this study, and may require further refinements. Nonetheless, the combination of RT-qPCR and ATOPlex may be a powerful tool to simultaneously detect/quantify SARS-CoV-2 RNA and monitor emerging VOC in wastewater samples.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , RNA, Viral/genetics , Reverse Transcription , SARS-CoV-2/genetics , Wastewater/analysis , Wastewater-Based Epidemiological Monitoring
15.
Sci Total Environ ; 837: 155663, 2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-1819600

ABSTRACT

Digital polymerase chain reaction (dPCR) is emerging as a reliable platform for quantifying microorganisms in the field of water microbiology. This paper reviews the fundamental principles of dPCR and its application for health-related water microbiology. The relevant literature indicates increasing adoption of dPCR for measuring fecal indicator bacteria, microbial source tracking marker genes, and pathogens in various aquatic environments. The adoption of dPCR has accelerated recently due to increasing use for wastewater surveillance of Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2) - the virus that causes Coronavirus Disease 2019 (COVID-19). The collective experience in the scientific literature indicates that well-optimized dPCR assays can quantify genetic material from microorganisms without the need for a calibration curve and often with superior analytical performance (i.e., greater sensitivity, precision, and reproducibility) than quantitative polymerase chain reaction (qPCR). Nonetheless, dPCR should not be viewed as a panacea for the fundamental uncertainties and limitations associated with measuring microorganisms in water microbiology. With dPCR platforms, the sample analysis cost and processing time are typically greater than qPCR. However, if improved analytical performance (i.e., sensitivity and accuracy) is critical, dPCR can be an alternative option for quantifying microorganisms, including pathogens, in aquatic environments.


Subject(s)
COVID-19 , Water Quality , Humans , Public Health , Real-Time Polymerase Chain Reaction , Reproducibility of Results , SARS-CoV-2/genetics , Wastewater , Wastewater-Based Epidemiological Monitoring
16.
Sci Total Environ ; 835: 155347, 2022 Aug 20.
Article in English | MEDLINE | ID: covidwho-1796127

ABSTRACT

Much of what is known and theorized concerning passive sampling techniques has been developed considering chemical analytes. Yet, historically, biological analytes, such as Salmonella typhi, have been collected from wastewater via passive sampling with Moore swabs. In response to the COVID-19 pandemic, passive sampling is re-emerging as a promising technique to monitor SARS-CoV-2 RNA in wastewater. Method comparisons and disease surveillance using composite, grab, and passive sampling for SARS-CoV-2 RNA detection have found passive sampling with a variety of materials routinely produced qualitative results superior to grab samples and useful for sub-sewershed surveillance of COVID-19. Among individual studies, SARS-CoV-2 RNA concentrations derived from passive samplers demonstrated heterogeneous correlation with concentrations from paired composite samples ranging from weak (R2 = 0.27, 0.31) to moderate (R2 = 0.59) to strong (R2 = 0.76). Among passive sampler materials, electronegative membranes have shown great promise with linear uptake of SARS-CoV-2 RNA observed for exposure durations of 24 to 48 h and in several cases RNA positivity on par with composite samples. Continuing development of passive sampling methods for the surveillance of infectious diseases via diverse forms of fecal waste should focus on optimizing sampler materials for the efficient uptake and recovery of biological analytes, kit-free extraction, and resource-efficient testing methods capable of rapidly producing qualitative or quantitative data. With such refinements passive sampling could prove to be a fundamental tool for scaling wastewater surveillance of infectious disease, especially among the 1.8 billion persons living in low-resource settings served by non-traditional wastewater collection infrastructure.


Subject(s)
COVID-19 , Communicable Diseases , COVID-19/epidemiology , Communicable Diseases/epidemiology , Humans , Pandemics , RNA, Viral , SARS-CoV-2 , Wastewater , Wastewater-Based Epidemiological Monitoring
17.
Water Res ; 218: 118481, 2022 Jun 30.
Article in English | MEDLINE | ID: covidwho-1796028

ABSTRACT

Monitoring SARS-CoV-2 RNA in sewer systems, upstream of a wastewater treatment plant, is an effective approach for understanding potential COVID-19 transmission in communities with higher spatial resolutions. Passive sampling devices provide a practical solution for frequent sampling within sewer networks where the use of autosamplers is not feasible. Currently, the design of upstream sampling is impeded by limited understanding of the fate of SARS-CoV-2 RNA in sewers and the sensitivity of passive samplers for the number of infected individuals in a catchment. In this study, passive samplers containing electronegative membranes were applied for at least 24-h continuous sampling in sewer systems. When monitoring SARS-CoV-2 along a trunk sewer pipe, we found RNA signals decreased proportionally to increasing dilutions, with non-detects occurring at the end of pipe. The passive sampling membranes were able to detect SARS-CoV-2 shed by >2 COVID-19 infection cases in 10,000 people. Moreover, upstream monitoring in multiple sewersheds using passive samplers identified the emergence of SARS-CoV-2 in wastewater one week ahead of clinical reporting and reflected the spatiotemporal spread of a COVID-19 cluster within a city. This study provides important information to guide the development of wastewater surveillance strategies at catchment and subcatchment levels using different sampling techniques.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , RNA, Viral , Wastewater , Wastewater-Based Epidemiological Monitoring
18.
Sci Total Environ ; 820: 153171, 2022 May 10.
Article in English | MEDLINE | ID: covidwho-1629486

ABSTRACT

On the 26th of November 2021, the World Health Organization (WHO) designated the newly detected B.1.1.529 lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) the Omicron Variant of Concern (VOC). The genome of the Omicron VOC contains more than 50 mutations, many of which have been associated with increased transmissibility, differing disease severity, and potential to evade immune responses developed for previous VOCs such as Alpha and Delta. In the days since the designation of B.1.1.529 as a VOC, infections with the lineage have been reported in countries around the globe and many countries have implemented travel restrictions and increased border controls in response. We putatively detected the Omicron variant in an aircraft wastewater sample from a flight arriving to Darwin, Australia from Johannesburg, South Africa on the 25th of November 2021 via positive results on the CDC N1, CDC N2, and del(69-70) RT-qPCR assays per guidance from the WHO. The Australian Northern Territory Health Department detected one passenger onboard the flight who was infected with SARS-CoV-2, which was determined to be the Omicron VOC by sequencing of a nasopharyngeal swab sample. Subsequent sequencing of the aircraft wastewater sample using the ARTIC V3 protocol with Nanopore and ATOPlex confirmed the presence of the Omicron variant with a consensus genome that clustered with the B.1.1.529 BA.1 sub-lineage. Our detection and confirmation of a single onboard Omicron infection via aircraft wastewater further bolsters the important role that aircraft wastewater can play as an independent and unintrusive surveillance point for infectious diseases, particularly coronavirus disease 2019.


Subject(s)
COVID-19 , SARS-CoV-2 , Aircraft , Australia , COVID-19/epidemiology , Humans , SARS-CoV-2/genetics , South Africa/epidemiology , Wastewater
19.
Sci Total Environ ; 808: 152033, 2022 Feb 20.
Article in English | MEDLINE | ID: covidwho-1561034

ABSTRACT

In this study, 14 virus concentration protocols based on centrifugation, filtration, polyethylene glycol (PEG) precipitation and ultrafiltration were tested for their efficacy for the quantification of SARS-CoV-2 in wastewater samples. These protocols were paired with four RNA extraction procedures resulting in a combination of 50 unique approaches. Bovine respiratory syncytial virus (BRSV) was used as a process control and seeded in each wastewater sample subjected to all 50 protocols. The recovery of BRSV obtained through the application of 50 unique approaches ranged from <0.03 to 64.7% (±1.6%). Combination of centrifugation as the solid removal step, ultrafiltration (Amicon-UF-15; 100 kDa cut-off; protocol 9) as the primary virus concentration method, and Zymo Quick-RNA extraction kit provided the highest BRSV recovery (64.7 ± 1.6%). To determine the impact of prolonged storage of large wastewater sample volume (900 mL) at -20 °C on enveloped virus decay, the BRSV seeded wastewaters samples were stored at -20 °C up to 110 days and analyzed using the most efficient concentration (protocol 9) and extraction (Zymo Quick-RNA kit) methods. BRSV RNA followed a first-order decay rate (k = 0.04/h with r2 = 0.99) in wastewater. Finally, 21 wastewater influent samples from five wastewater treatment plants (WWTPs) in southern Maryland, USA were analyzed between May to August 2020 to determine SARS-CoV-2 RNA concentrations. SARS-CoV-2 RNA was quantifiable in 17/21 (81%) of the influent wastewater samples with concentration ranging from 1.10 (±0.10) × 104 to 2.38 (±0.16) × 106 gene copies/L. Among the RT-qPCR assays tested, US CDC N1 assay was the most sensitive followed by US CDC N2, E_Sarbeco, and RdRp assays. Data presented in this study may enhance our understanding on the effective concentration and extraction of SARS-CoV-2 from wastewater.


Subject(s)
COVID-19 , Wastewater , Animals , Cattle , Humans , RNA, Viral , SARS-CoV-2 , Ultrafiltration
20.
Sci Total Environ ; 799: 149386, 2021 Dec 10.
Article in English | MEDLINE | ID: covidwho-1545398

ABSTRACT

To support public-health-related disease surveillance and monitoring, it is crucial to concentrate both enveloped and non-enveloped viruses from domestic wastewater. To date, most concentration methods were developed for non-enveloped viruses, and limited studies have directly compared the recovery efficiency of both types of viruses. In this study, the effectiveness of two different concentration methods (Concentrating pipette (CP) method and an adsorption-extraction (AE) method amended with MgCl2) were evaluated for untreated wastewater matrices using three different viruses (SARS-CoV-2 (seeded), human adenovirus 40/41 (HAdV 40/41), and enterovirus (EV)) and a wastewater-associated bacterial marker gene targeting Lachnospiraceae (Lachno3). For SARS-CoV-2, the estimated mean recovery efficiencies were significantly greater by as much as 5.46 times, using the CP method than the AE method amended with MgCl2. SARS-CoV-2 RNA recovery was greater for samples with higher titer seeds regardless of the method, and the estimated mean recovery efficiencies using the CP method were 25.1 ± 11% across ten WWTPs when wastewater samples were seeded with 5 × 104 gene copies (GC) of SARS-CoV-2. Meanwhile, the AE method yielded significantly greater concentrations of indigenous HAdV 40/41 and Lachno3 from wastewater compared to the CP method. Finally, no significant differences in indigenous EV concentrations were identified in comparing the AE and CP methods. These data indicate that the most effective concentration method varies by microbial analyte and that the priorities of the surveillance or monitoring program should be considered when choosing the concentration method.


Subject(s)
COVID-19 , Enterovirus , Viruses , Enterovirus/genetics , Humans , RNA, Viral , SARS-CoV-2 , Sewage , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL